Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nat Microbiol ; 9(2): 346-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225460

RESUMO

Antibiotic tolerance is the ability of a susceptible population to survive high doses of cidal drugs and has been shown to compromise therapeutic outcomes in bacterial infections. In comparison, whether fungicide tolerance can be induced by host-derived factors during fungal diseases remains largely unknown. Here, through a systematic evaluation of metabolite-drug-fungal interactions in the leading fungal meningitis pathogen, Cryptococcus neoformans, we found that brain glucose induces fungal tolerance to amphotericin B (AmB) in mouse brain tissue and patient cerebrospinal fluid via the fungal glucose repression activator Mig1. Mig1-mediated tolerance limits treatment efficacy for cryptococcal meningitis in mice via inhibiting the synthesis of ergosterol, the target of AmB, and promoting the production of inositolphosphorylceramide, which competes with AmB for ergosterol. Furthermore, AmB combined with an inhibitor of fungal-specific inositolphosphorylceramide synthase, aureobasidin A, shows better efficacy against cryptococcal meningitis in mice than do clinically recommended therapies.


Assuntos
Cryptococcus neoformans , Meningite Criptocócica , Humanos , Animais , Camundongos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Antifúngicos/farmacologia , Encéfalo , Ergosterol/uso terapêutico
2.
Cell Host Microbe ; 32(2): 276-289.e7, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215741

RESUMO

Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.


Assuntos
Criptococose , Cryptococcus neoformans , Fungicidas Industriais , Pneumonia , Animais , Camundongos , Anfotericina B/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Fungicidas Industriais/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia
3.
Elife ; 132024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251723

RESUMO

Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for in vivo and in vitro multidrug resistance in C. neoformans. Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1K97 coordinates with its ubiquitination processes at Isw1K113 and Isw1K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas de Saccharomyces cerevisiae , Humanos , Cromatina , Cryptococcus neoformans/genética , Saccharomyces cerevisiae/genética , Acetilação , Comportamento Imitativo , Adenosina Trifosfatases/metabolismo , Ubiquitinação , Resistência a Múltiplos Medicamentos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Bioresour Technol ; 394: 130244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145763

RESUMO

Hydroxylated steroids are value-added products with diverse biological activities mediated by cytochrome P450 enzymes, however, few has been thoroughly characterized in fungi. This study introduces a rapid identification strategy for filamentous fungi P450 enzymes through transcriptome and bioinformatics analysis. Five novel enzymes (CYP68J5, CYP68L10, CYP68J3, CYP68N1 and CYP68N3) were identified and characterized in Saccharomyces cerevisiae or Aspergillus oryzae. Molecular docking and dynamics simulations were employed to elucidate hydroxylation preferences of CYP68J5 (11α, 7α bihydroxylase) and CYP68N1 (11α hydroxylase). Additionally, redox partners (cytochrome P450 reductase and cytochrome b5) and ABC transporter were co-expressed with CYP68N1 to enhance 11α-OH-androstenedione (11α-OH-4AD) production. The engineered cell factory, co-expressing CPR1 and CYP68N1, achieved a significant increase of 11α-OH-4AD production, reaching 0.845 g·L-1, which increased by 14 times compared to the original strain. This study provides a comprehensive approach for identifying and implementing novel cytochrome P450 enzymes, paving the way for sustainable production of steroidal products.


Assuntos
Sistema Enzimático do Citocromo P-450 , Esteroides , Hidroxilação , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Saccharomyces cerevisiae/metabolismo , Fungos/metabolismo
5.
Med Mycol ; 61(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985734

RESUMO

Although previous studies on the genotypic diversity and antifungal susceptibility of the Cryptococcus neoformans species complex (CNSC) isolates from China revealed ST5 genotype isolates being dominant, the information about the CNSC isolates from Chinese HIV-infected patients is limited. In this study, 171 CNSC isolates from HIV-infected patients in the Chongqing region of Southwest China were genotyped using the International Society for Human and Animal Mycology-multilocus sequence typing consensus scheme, and their antifungal drug susceptibilities were determined following CLSI M27-A3 guidelines. Among 171 isolates, six sequence types (STs) were identified, including the dominant ST5 isolates, the newly reported ST15, and four diploid VNIII isolates (ST632/ST636). Moreover, a total of 1019 CNSC isolates with STs and HIV-status information were collected and analyzed from Mainland China in the present study. A minimum spanning analysis grouped these 1019 isolates into three main subgroups, which were dominated by the ST5 clonal complex (CC5), followed by the ST31 clonal complex (CC31) and ST93 clonal complex (CC93). The trend of resistance or decreasing susceptibility of clinical CNSC isolates to azole agents within HIV-infected patients from the Chongqing region is increasing, especially resistance to fluconazole.


In this paper, novel ST15 and four diploid VNIII isolates (ST632/ST636) were found in 171 CNSC isolates in Southwest China, including evidence for resistance to fluconazole. Moreover, we clustered the 1019 clinical CNSC isolates reported so far from Mainland China into three major subgroups.


Assuntos
Criptococose , Cryptococcus neoformans , Infecções por HIV , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Criptococose/microbiologia , Criptococose/veterinária , Diploide , Testes de Sensibilidade Microbiana/veterinária , Genótipo , China/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/veterinária
6.
Adv Drug Deliv Rev ; 198: 114874, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211279

RESUMO

The growing occurrence of invasive fungal infections and the mounting rates of drug resistance constitute a significant menace to human health. Antifungal drug combinations have garnered substantial interest for their potential to improve therapeutic efficacy, reduce drug doses, reverse, or ameliorate drug resistance. A thorough understanding of the molecular mechanisms underlying antifungal drug resistance and drug combination is key to developing new drug combinations. Here we discuss the mechanisms of antifungal drug resistance and elucidate how to discover potent drug combinations to surmount resistance. We also examine the challenges encountered in developing such combinations and discuss prospects, including advanced drug delivery strategies.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Combinação de Medicamentos , Farmacorresistência Fúngica
7.
Infect Dis Poverty ; 12(1): 20, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932414

RESUMO

BACKGROUND: Emerging fungal pathogens pose important threats to global public health. The World Health Organization has responded to the rising threat of traditionally neglected fungal infections by developing a Fungal Priority Pathogens List (FPPL). Taking the highest-ranked fungal pathogen in the FPPL, Cryptococcus neoformans, as a paradigm, we review progress made over the past two decades on its global burden, its clinical manifestation and management of cryptococcal infection, and its antifungal resistance. The purpose of this review is to drive research efforts to improve future diagnoses, therapies, and interventions associated with fungal infections. METHODS: We first reviewed trends in the global burden of HIV-associated cryptococcal infection, mainly based on a series of systematic studies. We next conducted scoping reviews in accordance with the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews using PubMed and ScienceDirect with the keyword Cryptococcus neoformans to identify case reports of cryptococcal infections published since 2000. We then reviewed recent updates on the diagnosis and antifungal treatment of cryptococcal infections. Finally, we summarized knowledge regarding the resistance and tolerance of C. neoformans to approved antifungal drugs. RESULTS: There has been a general reduction in the estimated global burden of HIV-associated cryptococcal meningitis since 2009, probably due to improvements in highly active antiretroviral therapies. However, cryptococcal meningitis still accounts for 19% of AIDS-related deaths annually. The incidences of CM in Europe and North America and the Latin America region have increased by approximately two-fold since 2009, while other regions showed either reduced or stable numbers of cases. Unfortunately, diagnostic and treatment options for cryptococcal infections are limited, and emerging antifungal resistance exacerbates the public health burden. CONCLUSION: The rising threat of C. neoformans is compounded by accumulating evidence for its ability to infect immunocompetent individuals and the emergence of antifungal-resistant variants. Emphasis should be placed on further understanding the mechanisms of pathogenicity and of antifungal resistance and tolerance. The development of novel management strategies through the identification of new drug targets and the discovery and optimization of new and existing diagnostics and therapeutics are key to reducing the health burden.


Assuntos
Cryptococcus neoformans , Infecções por HIV , Meningite Criptocócica , Micoses , Humanos , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/epidemiologia , Meningite Criptocócica/complicações , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Infecções por HIV/tratamento farmacológico , Micoses/complicações , Micoses/tratamento farmacológico
8.
Nat Commun ; 13(1): 7938, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566249

RESUMO

Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.


Assuntos
Cryptococcus neoformans , Proteínas Fúngicas , Meningite Criptocócica , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento/genética , Reprodução Assexuada/genética , Meningite Criptocócica/parasitologia
9.
Appl Environ Microbiol ; 88(13): e0043722, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35736228

RESUMO

The amino sugar N-acetyl-d-glucosamine (GlcNAc) is the key constituent of cell wall components and plays an important role in pathogenesis in a wide range of fungi. However, catabolism of GlcNAc has not been studied in basidiomycete fungi. In this study, we identified and characterized a gene cluster essential for GlcNAc utilization in Cryptococcus deneoformans, an environmental human fungal pathogen. The C. deneoformans genome contains a GlcNAc transporter (Ngt1), a GlcNAc kinase (Hxk3), a GlcNAc-6-phosphate deacetylase (Dac1), and a glucosamine-6-phosphate deaminase (Nag1). Their expression levels were highly induced in cultures containing GlcNAc as the sole carbon source, and the corresponding mutants showed severe growth defects in the presence of GlcNAc. Functional and biochemical analyses revealed that HXK3 encodes a novel GlcNAc kinase. Site-directed mutations of conserved residues of Hxk3 indicated that ATP binding and GlcNAc binding are essential for GlcNAc kinase activities. Taken together, the results from this study provide crucial insights into basidiomycete GlcNAc catabolism. IMPORTANCEN-Acetylglucosamine (GlcNAc) is recognized as not only the building block of chitin but also an important signaling molecule in fungi. The catabolic pathway of GlcNAc also plays an important role in vital biological processes in fungi. However, the utilization pathway of GlcNAc in the phylum Basidiomycota, which contains more than 41,000 species, remains unknown. Cryptococcus deneoformans is a representative basidiomycetous pathogen that causes life-threatening meningitis. In this study, we characterized a gene cluster essential for GlcNAc utilization in C. deneoformans and identified a novel GlcNAc kinase. The results of this study provide important insights into basidiomycete GlcNAc catabolism and offer a starting point for revealing its role in pathogenesis.


Assuntos
Candida albicans , Cryptococcus , Acetilglucosamina/metabolismo , Parede Celular/metabolismo , Quitina/metabolismo , Humanos
10.
J Med Chem ; 65(11): 8029-8039, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35637173

RESUMO

The emergence of drug-resistant fungal pathogens poses great threats to an increasing number of vulnerable populations worldwide, and the need for novel antifungal agents is imperative. In this work, a series of lipo-γ-AA peptides were synthesized and evaluated for their biological activities. One lead, MW5, exhibited potent and broad-spectrum antifungal activity. In addition, MW5 potently boosted the efficacy of fluconazole against clinical azole-resistant Candida isolates. Mechanistic investigation showed that the lead compound disrupted the cell membrane, significantly boosted the production of reactive oxygen species, and undermined the function of the efflux pump, thus resensitizing drug-resistant Candida albicans to fluconazole. Notably, coadministration of MW5 and fluconazole exhibited potent in vivo antifungal activity in a murine model of mucocutaneous candidiasis. Our results demonstrated that lipo-γ-AA peptides have great promise for use alone or in combination to combat drug-resistant Candida infections.


Assuntos
Antifúngicos , Candidíase , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Farmacorresistência Fúngica , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Peptídeos/uso terapêutico
11.
Microbiol Spectr ; 10(3): e0265321, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35471092

RESUMO

Sexual reproduction facilitates infection by the production of both a lineage advantage and infectious sexual spores in the ubiquitous human fungal pathogen Cryptococcus deneoformans. However, the regulatory determinants specific for initiating mating remain poorly understood. Here, we identified a velvet family regulator, Cva1, that strongly promotes sexual reproduction in C. deneoformans. This regulation was determined to be specific, based on a comprehensive phenotypic analysis of cva1Δ under 26 distinct in vitro and in vivo growth conditions. We further revealed that Cva1 plays a critical role in the initiation of early mating events, including sexual cell-cell fusion, but is not important for the late sexual development stages or meiosis. Thus, Cva1 specifically contributes to mating activation. Importantly, a novel mating-responsive protein, Cfs1, serves as the key target of Cva1 during mating, since its absence nearly blocks cell-cell fusion in C. deneoformans and its sister species C. neoformans. Together, our findings provide insight into how C. deneoformans ensures the regulatory specificity of mating. IMPORTANCE The human fungal pathogen C. deneoformans is a model organism for studying fungal sexual reproduction, which is considered to be important to infection. However, the specific regulatory determinants for activation of sexual reproduction remain poorly understood. In this study, by combining transcriptomic and comprehensive phenotypic analysis, we identified a velvet family regulator Cva1 that specifically and critically elicits early mating events, including sexual cell-cell fusion. Significantly, Cva1 induces mating through the novel mating-responsive protein Cfs1, which is essential for cell-cell fusion in C. deneoformans and its sister species C. neoformans. Considering that Cva1 and Cfs1 are highly conserved in species belonging to Cryptococcaeceae, they may play conserved and specific roles in the initiation of sexual reproduction in this important fungal clade, which includes multiple human fungal pathogens.


Assuntos
Cryptococcus neoformans , Proteínas Fúngicas , Genes Fúngicos Tipo Acasalamento , Fatores de Transcrição , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Meiose , Fatores de Transcrição/genética
12.
Eur J Med Chem ; 233: 114250, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276422

RESUMO

The increasing emergence and spread of drug resistant Candida albicans represent a serious challenge for effective treatment and call for the development of new therapeutic options. To address this need, we synthesized a series of polypyridyl iridium(III) complexes and studied their antimicrobial activities. Herein, one lead iridium(III) complex Ir-3 [(ptpy)2Ir(dppz)]PF6, with ptpy = 2-(p-tolyl)pyridine and dppz = dipyrido[3,2-a:2',3'-c]phenazine, exhibited potent and broad-spectrum antifungal activities against drug-resistant pathogens and low hemolytic activity toward mammalian cells. Furthermore, Ir-3 showed low tendency to induce resistance, displayed biofilm inhibition and eradication activities. Significantly, Ir-3 exhibited potent in vivo antifungal activity in a murine model of disseminated candidiasis. This study may pave the way for the development of novel antifungal agent based upon polypyridyl iridium(III) complex to combat antifungal resistance.


Assuntos
Candidíase , Irídio , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Farmacorresistência Fúngica , Irídio/farmacologia , Irídio/uso terapêutico , Mamíferos , Camundongos
15.
Zhongguo Zhong Yao Za Zhi ; 45(24): 5884-5889, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33496128

RESUMO

Protoberberine alkaloids belong to the quaternary ammonium isoquinoline alkaloids, and are the main active ingredients in traditional Chinese herbal medicines, like Coptis chinensis. They have been widely used to treat such diseases as gastroenteritis, intestinal infections, and conjunctivitis. Studies have shown that structural modification of the protoberberine alkaloids could produce derivative compounds with new pharmacological effects and biological activities, but the transformation mechanism is not clear yet. This article mainly summarizes the researches on the biotransformation and structure modification of protoberberine alkaloids mainly based on berberine, so as to provide background basis and new ideas for studies relating to the mechanism of protoberberine alkaloids and the pharmacological activity and application of new compounds.


Assuntos
Alcaloides , Alcaloides de Berberina , Berberina , Coptis , Biotransformação
16.
ACS Nano ; 13(11): 13015-13026, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31689086

RESUMO

Overcoming the reticuloendothelial system (RES) has long been a vital challenge to nanoparticles as drug carriers. Modification of nanoparticles with polyethylene glycol helps them avoid clearance by macrophages but also suppresses their internalization by target cells. To overcome this paradox, we developed an RES-specific blocking system utilizing a "don't-eat-us" strategy. First, a CD47-derived, enzyme-resistant peptide ligand was designed and placed on liposomes (d-self-peptide-labeled liposome, DSL). After mainline administration, DSL was quickly adsorbed onto hepatic phagocyte membranes (including those of Kupffer cells and liver sinusoidal endothelial cells), forming a long-lasting mask that enclosed the cell membranes and thus reducing interactions between phagocytes and subsequently injected nanoparticles. Compared with blank conventional liposomes (CL), DSL blocked the RES at a much lower dose, and the effect was sustained for a much longer time, highly prolonging the elimination half-life of the subsequently injected nanoparticles. This "don't-eat-us" strategy by DSL was further verified on the brain-targeted delivery against a cryptococcal meningitis model, providing dramatically enhanced brain accumulation of the targeted delivery system and superior therapeutic outcome of model drug Amphotericin B compared with CL. Our study demonstrates a strategy that blocks the RES by masking phagocyte surfaces to prolong nanoparticle circulation time without excess modification and illustrates its utility in enhancing nanoparticle delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Sistema Fagocitário Mononuclear/imunologia , Nanopartículas/química , Animais , Portadores de Fármacos/química , Lipossomos/imunologia , Camundongos , Células RAW 264.7
17.
Emerg Microbes Infect ; 8(1): 895-908, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223062

RESUMO

The Prp8 intein is one of the most widespread eukaryotic inteins, present in important pathogenic fungi, including Cryptococcus and Aspergillus species. Because the processed Prp8 carries out essential and non-redundant cellular functions, a Prp8 intein inhibitor is a mechanistically novel antifungal agent. In this report, we demonstrated that cisplatin, an FDA-approved cancer drug, significantly arrested growth of Prp8 intein-containing fungi C. neoformans and C. gattii, but only poorly inhibited growth of intein-free Candida species. These results suggest that cisplatin arrests fungal growth through specific inhibition of the Prp8 intein. Cisplatin was also found to significantly inhibit growth of C. neoformans in a mouse model. Our results further showed that cisplatin inhibited Prp8 intein splicing in vitro in a dose-dependent manner by direct binding to the Prp8 intein. Crystal structures of the apo- and cisplatin-bound Prp8 inteins revealed that two degenerate cisplatin molecules bind at the intein active site. Mutation of the splicing-site residues led to loss of cisplatin binding, as well as impairment of intein splicing. Finally, we found that overexpression of the Prp8 intein in cryptococcal species conferred cisplatin resistance. Overall, these results indicate that the Prp8 intein is a novel antifungal target worth further investigation.


Assuntos
Antifúngicos/administração & dosagem , Cisplatino/administração & dosagem , Criptococose/microbiologia , Cryptococcus neoformans/efeitos dos fármacos , Proteínas Fúngicas/genética , Inteínas , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Animais , Antifúngicos/química , Cisplatino/química , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Feminino , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência
18.
Polymers (Basel) ; 11(2)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30960254

RESUMO

Our goal was to improve treatment outcomes for C. neoformans infection by designing nanocarriers that enhance drug-encapsulating capacity and stability. Thus, a noncovalent complex of methoxy poly(ethylene glycol)-poly(lactide)-poly(ß-amino ester) (MPEG-PLA-PAE) and amphotericin B (AMB) was developed and characterized. The MPEG-PLA-PAE copolymer was synthesized by a Michael-type addition reaction; the copolymer was then used to prepare the AMB-loaded nanocomplex. AMB was in a highly aggregated state within complex cores. A high encapsulation efficiency (>90%) and stability of the AMB-loaded nanocomplex were obtained via electrostatic interaction between AMB and PAE blocks. This nanocomplex retained drug activity against C. neoformans in vitro. Compared with micellar AMB, the AMB nanocomplex was more efficient in terms of reducing C. neoformans burden in lungs, liver, and spleen, based on its improved biodistribution. The AMB/MPEG-PLA-PAE complex with enhanced drug-loading capacity and stability can serve as a platform for effective treatment of C. neoformans infection.

19.
ACS Nano ; 13(5): 5268-5277, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31022341

RESUMO

Cell membrane cloaking is an emerging field in drug delivery in which specific functions of parent cells are conferred to newly formed biomimetic vehicles. A growing variety of delivery systems with diverse surface properties have been utilized for this strategy, but it is unclear whether the affinity of membrane-core pairs could guarantee effective and proper camouflaging. In this study, we propose a concise and effective "molecular affinity" strategy using the intracellular domain of transmembrane receptors as "grippers" during membrane coating. Red blood cell (RBC) membranes and cationic liposomes were adopted for fabrication, and a peptide ligand derived from the cytoplasmic protein P4.2 was prepared to specifically recognize the cytoplasmic domain of band 3, a key transmembrane receptor of erythrocytes. Once anchored onto the liposome surface, the P4.2-derived peptide would interact with the isolated RBC membrane, forming a "hidden peptide button", which ensures the right-side-out orientation. The membrane-coated liposomes exhibited an appropriate size distribution around 100 nm and high stability, with superior circulation durations compared with those of conventional PEGylated liposomes. Importantly, they possessed the ability to target Candida albicans by the interaction between the pathogenic fungus and host erythrocytes and to neutralize hemotoxin secreted by the pathogenic fungi. The curative effect of the model drug was thus substantially improved. In summary, the "molecular affinity" strategy may provide a powerful and universal approach for the construction of cell membrane-coated biomaterials and nanomedicines at both laboratory and industrial scales.


Assuntos
Materiais Biomiméticos/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Peptídeos/química , Materiais Biomiméticos/química , Biomimética/métodos , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Humanos , Ligantes , Lipossomos/química , Lipossomos/farmacologia , Peptídeos/farmacologia
20.
Nat Prod Res ; 33(14): 2038-2043, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29888959

RESUMO

A novel sesquiterpenoid, roseosporol A (1), together with 12 known compounds (2-13) were isolated from the ethyl acetate extract of Lsr2-deletion mutant strain of Streptomyces roseosporus. Their structures were determined by spectroscopic methods, including NMR, HRMS, UV, IR and ECD.


Assuntos
Sesquiterpenos/isolamento & purificação , Streptomyces/química , Acetatos , Estrutura Molecular , Mutação , Sesquiterpenos/química , Análise Espectral , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...